Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

First-Principles Modeling of the "Clean-Up" of Native Oxides during Atomic Layer Deposition onto III-V Substrates

Identifieur interne : 001B79 ( Main/Repository ); précédent : 001B78; suivant : 001B80

First-Principles Modeling of the "Clean-Up" of Native Oxides during Atomic Layer Deposition onto III-V Substrates

Auteurs : RBID : Pascal:13-0121165

Descripteurs français

English descriptors

Abstract

The use of III-V materials as the channel in future transistor devices is dependent on removing the deleterious native oxides from their surface before deposition of a gate dielectric. Trimethylaluminium has been found to achieve in situ "clean-up" of the oxides of GaAs and InGaAs before atomic layer deposition (ALD) of alumina. Here we propose seven reaction mechanisms for "clean-up", featuring exchange of ligands between surface atoms, reduction of arsenic oxide by methyl groups, and desorption of various products. We use first-principles density functional theory (DFT) to determine which mechanistic path is thermodynamically favored. We also discuss the statistical likelihood of the interdependent pathways. "Clean-up" of an oxide film is shown to strongly depend on electropositivity of the precursor metal, affinity of the precursor ligand to the oxide, and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. We therefore predict that "clean-up" of III-V native oxides mostly produces As4 gas, but also GaAs solid or InAs solid. Most C is predicted to form C2H6 but with some C2H4, CH4, and H2O. An alternative pathway is nonredox ligand exchange, which is a pathway that allow nonreducible oxides to be cleaned up.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0121165

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">First-Principles Modeling of the "Clean-Up" of Native Oxides during Atomic Layer Deposition onto III-V Substrates</title>
<author>
<name sortKey="Klejna, Sylwia" uniqKey="Klejna S">Sylwia Klejna</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tyndall National Institute, University College Cork, Dyke Parade</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elliott, Simon D" uniqKey="Elliott S">Simon D. Elliott</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tyndall National Institute, University College Cork, Dyke Parade</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0121165</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0121165 INIST</idno>
<idno type="RBID">Pascal:13-0121165</idno>
<idno type="wicri:Area/Main/Corpus">001112</idno>
<idno type="wicri:Area/Main/Repository">001B79</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alumina</term>
<term>Aluminium complexes</term>
<term>Arsenic</term>
<term>Atomic layer method</term>
<term>Crystal growth from vapors</term>
<term>Density functional method</term>
<term>Desorption</term>
<term>Dielectric thin films</term>
<term>Gallium arsenides</term>
<term>Gates</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Ligands</term>
<term>Methane</term>
<term>Methyl compounds</term>
<term>Modelling</term>
<term>Oxide layer</term>
<term>Precursor</term>
<term>Reaction mechanism</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Transistor channel</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Couche oxyde</term>
<term>Méthode couche atomique</term>
<term>Croissance cristalline en phase vapeur</term>
<term>Canal transistor</term>
<term>Couche mince diélectrique</term>
<term>Electrode commande</term>
<term>Complexe d'aluminium</term>
<term>Arséniure de gallium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Alumine</term>
<term>Mécanisme réaction</term>
<term>Ligand</term>
<term>Arsenic</term>
<term>Composé méthylé</term>
<term>Désorption</term>
<term>Méthode fonctionnelle densité</term>
<term>Couche mince</term>
<term>Précurseur</term>
<term>Arséniure d'indium</term>
<term>Méthane</term>
<term>Substrat métal</term>
<term>8115</term>
<term>6855A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The use of III-V materials as the channel in future transistor devices is dependent on removing the deleterious native oxides from their surface before deposition of a gate dielectric. Trimethylaluminium has been found to achieve in situ "clean-up" of the oxides of GaAs and InGaAs before atomic layer deposition (ALD) of alumina. Here we propose seven reaction mechanisms for "clean-up", featuring exchange of ligands between surface atoms, reduction of arsenic oxide by methyl groups, and desorption of various products. We use first-principles density functional theory (DFT) to determine which mechanistic path is thermodynamically favored. We also discuss the statistical likelihood of the interdependent pathways. "Clean-up" of an oxide film is shown to strongly depend on electropositivity of the precursor metal, affinity of the precursor ligand to the oxide, and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. We therefore predict that "clean-up" of III-V native oxides mostly produces As
<sub>4</sub>
gas, but also GaAs solid or InAs solid. Most C is predicted to form C
<sub>2</sub>
H
<sub>6</sub>
but with some C
<sub>2</sub>
H
<sub>4</sub>
, CH
<sub>4</sub>
, and H
<sub>2</sub>
O. An alternative pathway is nonredox ligand exchange, which is a pathway that allow nonreducible oxides to be cleaned up.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>First-Principles Modeling of the "Clean-Up" of Native Oxides during Atomic Layer Deposition onto III-V Substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KLEJNA (Sylwia)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ELLIOTT (Simon D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Tyndall National Institute, University College Cork, Dyke Parade</s1>
<s2>Cork</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>643-654</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000506749940790</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>55 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0121165</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The use of III-V materials as the channel in future transistor devices is dependent on removing the deleterious native oxides from their surface before deposition of a gate dielectric. Trimethylaluminium has been found to achieve in situ "clean-up" of the oxides of GaAs and InGaAs before atomic layer deposition (ALD) of alumina. Here we propose seven reaction mechanisms for "clean-up", featuring exchange of ligands between surface atoms, reduction of arsenic oxide by methyl groups, and desorption of various products. We use first-principles density functional theory (DFT) to determine which mechanistic path is thermodynamically favored. We also discuss the statistical likelihood of the interdependent pathways. "Clean-up" of an oxide film is shown to strongly depend on electropositivity of the precursor metal, affinity of the precursor ligand to the oxide, and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. We therefore predict that "clean-up" of III-V native oxides mostly produces As
<sub>4</sub>
gas, but also GaAs solid or InAs solid. Most C is predicted to form C
<sub>2</sub>
H
<sub>6</sub>
but with some C
<sub>2</sub>
H
<sub>4</sub>
, CH
<sub>4</sub>
, and H
<sub>2</sub>
O. An alternative pathway is nonredox ligand exchange, which is a pathway that allow nonreducible oxides to be cleaned up.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15A</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode couche atomique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Atomic layer method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método capa atómica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Croissance cristalline en phase vapeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Crystal growth from vapors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Canal transistor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Transistor channel</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Canal transistor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche mince diélectrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Dielectric thin films</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gates</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Complexe d'aluminium</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aluminium complexes</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Alumine</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Alumina</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mécanisme réaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Reaction mechanism</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Mecanismo reacción</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Ligand</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ligands</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arsenic</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Arsenic</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Composé méthylé</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Methyl compounds</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Désorption</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Desorption</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Méthane</s0>
<s2>NK</s2>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Methane</s0>
<s2>NK</s2>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Substrat métal</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8115</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>6855A</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fN21>
<s1>098</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001B79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0121165
   |texte=   First-Principles Modeling of the "Clean-Up" of Native Oxides during Atomic Layer Deposition onto III-V Substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024